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Abstract

In this study, a special class of closed-form solutions for inhomogeneous rod is investigated. Namely, the following

problem is considered: determine the distribution axial rigidity when the material density is given of an inhomogeneous rod

so that the postulated fundamental trigonometric mode shape serves as an exact vibration mode. In this study, the

associated semi-inverse problem is solved that results in the distributions of axial rigidity that together with a specified law

of material density satisfy the governing eigenvalue problem. For comparison, the obtained closed-form solutions are

contrasted with approximate solutions based on an appropriate polynomial shapes, serving as trial functions in an energy

method. The obtained results are utilized for vibration tailoring, i.e. construction of the rod with a given natural frequency.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration of longitudinally vibrating homogeneous rods is a classic subject that is covered in nearly every
textbook but inhomogeneous rods have been studied much less extensively. Conway et al. [1] considered
tapered rods. Li considered cases of continuous [2] and piecewise variations of cross-sectional area [3]. Candan
and Elishakoff [4] constructed several closed-form solutions for inhomogeneous rods with continuously
variable modulus of elasticity. They postulated polynomial mode shapes and polynomial elastic modulus
variations (see also the recent monograph by Elishakoff [5]). Ram and Elishakoff [6] recently dealt with a
discrete formulation whereas new closed-form solution was derived by Raj and Sujith [7]. Trigonometric
function as candidate mode shape for deriving novel closed-form solutions have also been used by Caliò and
Elishakoff with reference to inhomogeneous beam–columns both for buckling [8] and vibration problems
[9–11]. Specifically in Ref. [8], it has been proved that harmonic functions can constitute closed-form buckling
mode of inhomogeneous column subjected to a distribution of axial compressive load. In Ref. [9], it has been
shown that a trigonometric function can serve both as the vibration and the buckling mode of inhomogeneous
beam–columns under different end conditions while in Refs. [10,11], the study has been extended to
inhomogeneous beam–column on elastic foundations.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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This study extends Refs. [4,5] to the case of trigonometric variations of modulus of elasticity along with
postulated mode shape, that also varies trigonometrically. Specifically, the problem formulation ought be
understood as follows: for a given material density function, reconstruct the flexural rigidity, such that the rod
has a given mode shape. For a given mass density, it turns out that the semi-inverse problem formulation
yields closed-form solutions.

2. Formulation of problem

Let us consider an inhomogeneous rod of length L, cross-sectional area A(x), varying modulus of elasticity
E(x), and varying material density r(x). The governing differential equation of the axial dynamic behavior of
such an inhomogeneous rod is given by

q
qx

EðxÞAðxÞ
quðx; tÞ

qx

� �
� rðxÞAðxÞ

qu2ðx; tÞ

qt2
¼ 0, (1)

where x is the axial coordinate, t the time and u(x, t) the axial displacement.
For simplicity, the non-dimensional coordinate x ¼ x/L is introduced. Harmonic vibration is studied so that

the displacement u(x, t) is represented as follows:

uðx; tÞ ¼ UðxÞeiot, (2)

where U(x) is the postulated mode shape and o the corresponding natural frequency which has to be
determined. Upon substitution of Eqs. (2) into (1), the latter becomes

d

dx
EðxÞAðxÞ

dUðxÞ
dx

� �
þ rðxÞAðxÞo2L2UðxÞ ¼ 0. (3)

The semi-inverse eigenvalue problem is posed as follows: Find an inhomogeneous beam that possesses a
specified harmonic mode, U(x), that satisfies the boundary conditions and the governing dynamic equation of
motion. This semi-inverse problem requires the determination of the distribution of axial rigidity,
D(x) ¼ E(x)A(x), that together with a pre-specified law of the mass distribution, m(x) ¼ r(x)A(x) satisfy
Eq. (3).

The axial rigidity D(x) and the mass distribution m(x) are represented as follows:

DðxÞ ¼ Do þD1 sinðjpxÞ þD2 cosðjpxÞ, (4)

mðxÞ ¼ mo þm1 sinðgpxÞ þm2 cosðgpxÞ, (5)

where Do, D1, D2, mo, m1, m2 are constants, while j and g are real numbers. There are several alternatives: (1)
The posed semi-inverse problem may have no solution, or (2) it may possess multiple solutions, or (3) it may
possess a unique solution. It will be shown that for a pre-specified distribution of material density, the solution
turns out to be a unique one.

Let us consider rods whose ends are either fixed or free. At the fixed end, the boundary condition reads

U ¼ 0, (6)

whereas at the free end, the boundary condition is

dU=dx ¼ 0. (7)

In this study, the differential equation (1) will be solved in the closed-form for three different boundary
conditions corresponding to the fixed–fixed rod, fixed–free rod, and free–free rod.

3. Fixed–fixed inhomogeneous rod

We first consider a fixed–fixed inhomogeneous rod for which the sinusoidal vibration mode that is possessed
by the uniform rod [12], is postulated:

UðxÞ ¼ sinðpxÞ. (8)
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Furthermore, the following expression of the axial rigidity and of the given mass distribution, according to
the general forms (4) and (5), are considered:

DðxÞ ¼ Do½1þ a cosðpxÞ�, (9)

mðxÞ ¼ mo½1þ b cosðpxÞ�. (10)

The coefficients mo and b are given, we must find Do and a. In view of Eqs. (9),(10), the left-hand side
differential equation (3), denoted R can be re-written as

R ¼ f�p2Do½1þ 2a cosðpxÞ� þ L2mo½1þ b cosðpxÞ�o2g sinðpxÞ. (11)

With the view to obtaining a closed-form solution, we set a ¼ b/2, in order to be able to write the latter
expression as a product

½�p2Do þ L2moo2�½1þ b cosðpxÞ� sinðpxÞ ¼ 0 (12)

leading to the following natural frequency:

o2 ¼ p2Do=moL2. (13)

It is worth noticing that the inhomogeneous rod has fundamental natural frequency, which is the
fundamental of the homogeneous rod with constant stiffness Do and uniform mass distribution mo. Since the
stiffness and the mass distributions must be positive b must satisfy the inequality �1obo1.

Note that the value Do is not specified; therefore, we conclude that Do can be any positive number, thus we
arrive at infinite amount of solutions. In Section 7, we will demonstrate how to obtain the unique solution to
the posed problem.

4. Fixed–free inhomogeneous rod

Proceeding as in the previous case the vibration mode of the uniform rod under the same boundary
condition is postulated:

UðxÞ ¼ sinðpx=2Þ. (14)

The axial rigidity and the mass distribution are considered in the form

DðxÞ ¼ Do½1þ a cosðpx=2Þ�, (15)

mðxÞ ¼ mo½1þ b cosðpx=2Þ�. (16)

Again, mo and b are given, the problem consists in determining Do and a.
By setting a ¼ b/2, and substituting expressions (15) and (16) into the differential equation (3) we

obtain

�
p2

4
Do þ L2moo2

� �
1þ b cos

p
2
x

� �h i
cosðpxÞ ¼ 0 (17)

leading to the following natural frequency:

o2 ¼ p2Do=4moL2. (18)

As in the previous case, also for the fixed–free boundary conditions, the inhomogeneous rod shares the same
fundamental natural frequency of the homogeneous one. Since the stiffness and the mass distributions must be
positive b, must satisfy the inequality b4�1.

5. Free–free inhomogeneous rod

The vibration mode of the uniform free–free rod is postulated:

UðxÞ ¼ cosðpxÞ. (19)
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Furthermore, for the inhomogeneous rod under question, the following expression of the axial rigidity and
of the mass distribution are considered:

DðxÞ ¼ Do 1þ a sinðpxÞ½ �, (20)

mðxÞ ¼ mo½1þ b sinðpxÞ�. (21)

Substituting the expressions (20) and (21), the left-hand side of the differential equation (3) becomes

R ¼ f�p2Do½1þ 2a sinðpxÞ� þ L2mo½1þ b cosðpxÞ�o2g cosðpxÞ. (22)

By setting a ¼ b/2 expression (22) assumes the product form and the equation of motion becomes

�p2Do þ L2moo2
� �

1þ b sinðpxÞ
� �

cosðpxÞ ¼ 0 (23)

that leads to the natural frequency

o2 ¼
p2Do

moL2
. (24)

Since the stiffness and the mass distributions must be positive, the coefficient b must satisfy the inequality
b4�1. Note that Eq. (24) coincides with Eq. (13) formally; it should be stressed that in the two cases the mode
shapes differ. Again, as in preceding two cases, Eq. (24) signifies, due to arbitrariness of Do, that we arrived at
infinite amount of solutions. In Section 7, we introduce an additional condition that selects a unique solution
from the infinite set.

6. Extension of the closed-form solutions to all modes

The previous obtained results can easily be extended to all modes by replacing p by np. The only verification
that must be performed is on the positive signs of the mass and stiffness distributions. In Table 1, the results of
this generalization are summarized.

7. Vibration tailoring

Let the vibration tailoring consist in the requirement the natural frequency be equal a pre-specified value O.
For the clamped–clamped rod we utilize Eq. (13); for a given value of mo we find the value

Do ¼ O2moL2=p2 (25)

that is needed in order the rod’s fundamental frequency to be equal to O. For the clamped–free rod, in order to
achieve the same natural frequency O, one has to take, as Eq. (18) suggests

Do ¼ 4O2moL2=p2, (26)

whereas for the free–free rod the necessary Do is again given by Eq. (26), although the mode shapes differ.
The solutions reported herein can be used as benchmarks. Also, in the future, when the technology allows

the production of rods with any desired distribution of axial rigidity and material density along the axis of the
rod, one will be able to design tailored inhomogeneous rods with pre-selected natural frequency. Thus, the
methodology of solving semi-inverse problems presented in this study may represent a valuable design tool for
vibration problems within the trigonometric class of inhomogeneity.
Table 1

Extension of the obtained results to all modes of vibrations

Boundary condition Postulated mode shapes Frequencies Condition on the values of b

Fixed–fixed U(x) ¼ sin(npx) o2 ¼ ðn2p2DoÞ=ðmoL2Þ �1obo1

Fixed–free U(x) ¼ sin(npx/2) o2 ¼ ðn2p2DoÞ=ð4moL2Þ �1obo1

Free–free U(x) ¼ cos(npx) o2 ¼ ðn2p2DoÞ=ðmoL2Þ �1obo1
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8. Conclusion

Apparently for the first time in the literature, trigonometric closed-form solutions have been derived for the
natural frequencies of a rod under three sets of boundary conditions. The distributions of the axial rigidity and
material density are represented in terms of trigonometric functions. The trigonometric function was also
postulated for the fundamental mode shape; conditions were established for which this postulate holds.

It appears remarkable that while the trigonometric mode shapes are possessed by homogeneous rods (see
the definitive textbook by Rao [12]), they can also appear in the inhomogeneous rods. The semi-inverse
problem turned out to be an effective tool for determining the closed-form solutions. One should stress that we
cannot analytically reconstruct both the material density and the flexural rigidity, as the definitive study of
Baruch [13] demonstrates. Therefore, the obtained results ought be interpreted in the following manner: For
the given material density, we are able to reconstruct the flexural rigidity that is compatible with the postulated
mode shape such that the fundamental natural frequencies equal the pre-selected value. Thus formulation that
was put forward in this study allowed the effective solution of the vibration-tailoring problem.
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[11] I. Caliò, I. Elishakoff, Closed-form solutions for axially graded beam–columns, Journal of Sound and Vibration 280 (2005) 1083–1094.

[12] S.S. Rao, Mechanical Vibration, Addison-Wesley, Reading, MA, 1995.

[13] M. Baruch, Modal data are insufficient for identification of both mass and stiffness matrices, AAIA Journal 35 (11) (1997) 1797–1798.


	Vibration tailoring of inhomogeneous rod that possesses �a trigonometric fundamental mode shape
	Introduction
	Formulation of problem
	Fixed-fixed inhomogeneous rod
	Fixed-free inhomogeneous rod
	Free-free inhomogeneous rod
	Extension of the closed-form solutions to all modes
	Vibration tailoring
	Conclusion
	Acknowledgments
	References


